# JOURNAL OF CLINICAL ONCOLOGY

# ORIGINAL REPORT

# *PD-L1* and *PD-L2* Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome

Margaretha G.M. Roemer, Ranjana H. Advani, Azra H. Ligon, Yasodha Natkunam, Robert A. Redd, Heather Homer, Courtney F. Connelly, Heather H. Sun, Sarah E. Daadi, Gordon J. Freeman, Philippe Armand, Bjoern Chapuy, Daphne de Jong, Richard T. Hoppe, Donna S. Neuberg, Scott J. Rodig, and Margaret A. Shipp

A B S T R A C T

# Purpose

Classical Hodgkin lymphomas (cHLs) include small numbers of malignant Reed-Sternberg cells within an extensive but ineffective inflammatory/immune cell infiltrate. In cHL, chromosome 9p24.1/ *PD-L1/PD-L2* alterations increase the abundance of the PD-1 ligands, PD-L1 and PD-L2, and their further induction through Janus kinase 2–signal transducers and activators of transcription signaling. The unique composition of cHL limits its analysis with high-throughput genomic assays. Therefore, the precise incidence, nature, and prognostic significance of *PD-L1/PD-L2* alterations in cHL remain undefined.

#### Methods

We used a fluorescent in situ hybridization assay to evaluate *CD274/PD-L1* and *PDCD1LG2/PD-L2* alterations in 108 biopsy specimens from patients with newly diagnosed cHL who were treated with the Stanford V regimen and had long-term follow-up. In each case, the frequency and magnitude of 9p24.1 alterations—polysomy, copy gain, and amplification—were determined, and the expression of PD-L1 and PD-L2 was evaluated by immunohistochemistry. We also assessed the association of 9p24.1 alterations with clinical parameters, which included stage (early stage I/II favorable risk, early stage unfavorable risk, advanced stage [AS] III/IV) and progression-free survival (PFS).

#### Results

Ninety-seven percent of all evaluated cHLs had concordant alterations of the *PD-L1* and *PD-L2* loci (polysomy, 5% [five of 108]; copy gain, 56% [61 of 108]; amplification, 36% [39 of 108]). There was an association between PD-L1 protein expression and relative genetic alterations in this series. PFS was significantly shorter for patients with 9p24.1 amplification, and the incidence of 9p24.1 amplification was increased in patients with AS cHL.

#### Conclusion

*PD-L1/PD-L2* alterations are a defining feature of cHL. Amplification of 9p24.1 is more common in patients with AS disease and associated with shorter PFS in this series. Further analyses of 9p24.1 alterations in patients treated with standard cHL induction regimens or checkpoint blockade are warranted.

J Clin Oncol 34. © 2016 by American Society of Clinical Oncology

## INTRODUCTION

Patients with newly diagnosed classical Hodgkin lymphoma (cHL) are currently treated with empirical combination chemotherapy regimens, such as ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine). An alternative combined modality regimen, Stanford V (doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, prednisone) and modified involved field radiation, is equally effective.<sup>1-3</sup> Although many patients respond well to these regimens, 20% to 30% experience a relapse after treatment or fail to respond to induction therapy.<sup>4,5</sup> For these patients, new therapies that are based on the unique biology of cHL are urgently needed.

Primary cHLs include small numbers of malignant Reed-Sternberg (RS) cells surrounded by an extensive but ineffective inflammatory/ immune cell infiltrate.<sup>6-8</sup> In cHL, chromosome 9p24.1/CD274(PD-L1)/PDCD1LG2(PD-L2) alterations have been shown to increase the abundance of these PD-1 ligands. The 9p24.1 amplicon also contains *JAK2*, and copy number–dependent Janus kinase 2–signal transducers and activators of

Margaretha G.M. Roemer, Robert A. Redd, Heather Homer, Courtney F. Connelly, Gordon J. Freeman, Philippe Armand, Bjoern Chapuy, Donna S. Neuberg, and Margaret A. Shipp, Dana-Farber Cancer Institute; Azra H. Ligon, Heather H. Sun, and Scott J. Rodig, Brigham and Women's Hospital, Boston, MA; Margaretha G.M. Roemer and Daphne de Jong, VU University Medical Center, Amsterdam, the Netherlands; and Ranjana H. Advani, Yasodha Natkunam, Sarah E. Daadi, and Richard T. Hoppe, Stanford University Medical Center, Stanford CA.

Published online ahead of print at www.jco.org on April 11, 2016.

Processed as a Rapid Communication manuscript.

Supported by National Institutes of Health Grant No. R01 CA161026 and the Miller Family Fund (M.A.S.).

S.J.R. and M.A.S. contributed equally to this work.

Terms in blue are defined in the glossary, found at the end of this article and online at www.jco.org.

Presented at the 57th American Society of Hematology Annual Meeting, Orlando, FL, December 4-8, 2015.

Authors' disclosures of potential conflicts of interest are found in the article online at www.jco.org. Author contributions are found at the end of this article.

Corresponding author: Margaret A. Shipp, MD, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; e-mail: margaret\_shipp@dfci.harvard.edu.

© 2016 by American Society of Clinical Oncology

0732-183X/16/3499-1/\$20.00

DOI: 10.1200/JCO.2016.66.4482

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 AmericarfiSioncietio 2016 Copyright Concology. All rights reserved.

transcription (JAK2-STAT) signaling further increases PD-1 ligand expression.<sup>6</sup> Less frequent chromosomal rearrangements of the PD-1 ligand loci have also been described.<sup>9</sup> Furthermore, Epstein-Barr virus (EBV) infection can increase expression of PD-1 ligands in EBV-positive Hodgkin lymphomas (HLs).<sup>10</sup>

PD-1 ligands engage the PD-1 receptor on T cells and induce PD-1 signaling and T-cell exhaustion by reversible inhibition of T-cell activation and proliferation.<sup>11</sup> Tumor cells expressing PD-1 ligands on their surface use the PD-1 pathway to evade an effective antitumor immune response.<sup>12</sup>

The genetic bases of PD-1 ligand deregulation and overexpression in cHL suggest the potential vulnerability of cHL to PD-1 blockade. For this reason, PD-1 blockade with nivolumab was evaluated in a phase I/Ib study of 23 heavily pretreated patients with relapsed/refractory cHL. In this pilot study, the overall response rate was 87%, and the median duration of response was not reached at 88 weeks.<sup>13,14</sup> All 10 evaluable patients had *PD-L1/ PD-L2* copy number alterations (CNAs), increased expression of the PD-1 ligands, and active JAK-STAT signaling.<sup>13</sup> In another phase Ib study of relapsed/refractory cHL, PD-1 blockade with pembrolizumab resulted in an overall response rate of 65% without serious adverse events.<sup>15</sup> These pilot studies showed that PD-1 blocking agents were well tolerated in relapsed/refractory cHL and associated with high response rates and long-lasting remissions.<sup>13-15</sup>

The unique cellular composition of primary cHL limits its analysis with high-throughput genomic assays. Therefore, the precise incidence, nature, and prognostic significance of *PD-L1* and *PD-L2* alterations in cHL remain undefined. We use a recently developed fluorescent in situ hybridization (FISH) assay to characterize 9p24.1/*PD-L1*/*PD-L2* alterations in a cohort of 108 patients with newly diagnosed cHL who were treated with the Stanford V regimen and have long-term outcome data.

#### **METHODS**

#### Patients

This study was an institutional review board-approved collaborative effort among Stanford University, Brigham and Women's Hospital, VU University Medical Center, and the Dana-Farber Cancer Institute. Formalin-fixed paraffin-embedded (FFPE) tumor samples and clinical data from 108 patients with newly diagnosed cHL were obtained from Stanford University. The pathology on all cases was reviewed and diagnoses confirmed independently by two expert hematopathologists (Y.N. and S.J.R.). Study patients were treated on three concurrent clinical protocols of the Stanford V chemotherapy regimen plus modified involved field radiation (IFR) for clinically defined risk groups as previously described.<sup>16,17</sup> Patients with Ann Arbor early stage (I/II) nonbulky disease and no B symptoms were treated with 8 weeks Stanford V and 30 Gy IFR (early stage favorable [ES-F] G4 protocol). Patients with Ann Arbor early stage (I/II) disease and unfavorable clinical risk factors—bulky disease  $\geq 10$  cm or mediastinal mass ratio of  $\ge 0.33x$  and/or B symptoms—were treated with 12 weeks Stanford V for 12 weeks and 36 Gy IFR to sites > 5 cm (early stage unfavorable [ES-U] G2 protocol). Patients with advanced stage (AS) III/IV disease were also treated with 12 weeks Stanford V and 36 Gy IFR to sites > 5 cm and the spleen, if involved (AS G3 protocol). One asymptomatic patient with early-stage nonbulky disease was treated on the G2 protocol because of an elevated erythrocyte sedimentation rate and involvement of more than three nodal sites. Three additional patients with early-stage bulky disease on physical examination were treated on the G4 protocol.

Long-term follow-up (median, 9 years) and detailed clinical information were available on all patients.

#### **FISH**

FISH was performed as previously described.<sup>13,18</sup> In brief, bacterial artificial chromosome (BAC) clones were selected from the UCSC Genome Browser and ordered from BACPAC Resources Center at Children's Hospital Oakland Research Institute in Oakland, California (https://bacpac.chori.org/home.htm). BAC DNA was extracted from Luria broth cultures by using the Qiagen Large-Construct Kit (Hilden, Germany) according to the manufacturer's recommendations and nick labeled with standard protocols (Abbott Molecular, Des Plaines, IL). Probes included Spectrum Orange–labeled RP11-599H20, which maps to 9p24.1 and includes *CD274/PD-L1*; Spectrum Green–labeled RP11-635N21, which also maps to 9p24.1 and encompasses *PDCD1LG2/PD-L2*; and Spectrum Aqua–labeled CEP9, a control centromeric probe that maps to 9p11-q11 (Abbott Molecular). An additional probe, Spectrum Green–labeled RP11-610G2, which maps upstream of *PDCD1LG2*, was used to confirm a possible chromosomal translocation.

Hematoxylin and eosin-stained FFPE tissue sections were reviewed, RS cells identified by their nuclear morphologic features, and areas with the highest density of RS cells circled by an expert hematopathologist (S.J.R.). Thereafter, slides were hybridized according to the manufacturer's recommendations (Abbott Molecular). Approximately 50 RS cells per case were analyzed. Nuclei with a target:control probe ratio of  $\geq$  3:1 were defined as amplified, and those with a probe ratio of > 1:1 but < 3:1 were classified as relative copy gain. In certain instances, cells with aggregated target signals that were tightly clustered around the control signal were classified as amplified by an expert cytogeneticist (A.H.L.). Nuclei with a probe ratio of 1:1 but more than two copies of each probe were defined as polysomic for chromosome 9p. In each case, the percent and magnitude of 9p24.1 amplification, copy gain, polysomy, and normal copy numbers (disomy) were noted. Cases were classified by the highest observed level of 9p24.1 alteration. Specifically, cases with 9p24.1 copy gain lacked amplification, and cases with 9p polysomy lacked 9p24.1 copy gain or amplification.

#### **Double Immunohistochemistry Staining**

Double staining of PD-L1 (clone 405.9A11; G.J.F.<sup>19</sup>) and PAX5 (24/ Pax-5; BD Biosciences, San Jose, CA) and of PD-L2 (clone 366C.9E5; G.J.F.) and pSTAT3 (D3A7; Cell Signaling, Danvers, MA) was performed with an automated staining system (Bond III; Leica Biosystems, Buffalo Grove, IL) as previously described.<sup>13</sup> Stained slides were scored by an expert hematopathologist (S.J.R.), and average intensity of staining (0 = no)staining, 1 = weak staining, 2 = moderate staining, 3 = strong staining) was reported. PD-L1 expression in PAX5 dim-positive malignant RS cells and PAX5-negative infiltrating normal cells was assessed separately. For PD-L1, 50 RS cells were counted, the number of malignant cells with positive staining (average intensity, 1 to 3+) was determined, and the percentage of positive cells was calculated (0% to 100%). For PD-L2 and pSTAT3, the percentage of malignant and nonmalignant cells with positive staining for PD-L2 within the tissue section was estimated (0% to 100%), and the average intensity of staining scored (1 to 3+). A modified H-score was generated by multiplying the percentage of malignant cells with positive staining (0% to 100%) and average intensity of positive staining in RS cells (1 to 3+).

#### EBV-Encoded Small RNA In Situ Hybridization

EBV-encoded small RNA (EBER) in situ hybridization was performed with an automated staining system (Bond III; Leica Biosystems) while following the manufacturer's protocol. Briefly,  $4-\mu$ m-thick paraffinembedded sections were prebaked at 60°C for 1 hour. Slides were loaded on the Bond III, dewaxed, rehydrated, and pretreated with a diluted enzyme solution for 15 minutes (Enzyme 1; Leica Biosystems). Thereafter, slides were incubated with a fluorescein-conjugated oligonucleotide EBER probe

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americanf Society 23/20/27/0ncology. All rights reserved. (600 ng/mL; Leica Biosystems) at 42°C for 2 hours. Subsequently, an antifluorescein antibody (Leica Biosystems) was applied to the slides for 15 minutes, followed by 8 minutes of postprimary blocking reagent, 8 minutes of horseradish peroxidase–labeled polymer, and 5 minutes of peroxidase block. Slides were then developed with 3,3-diaminobenzidine (10 minutes), counterstained with hematoxylin (5 minutes), dehydrated, and coverslipped. The aforementioned reagents were all components of the Bond Polymer Refine Detection system (Leica Biosystems).

#### Statistical Analysis

Analyses of 9p24.1 alterations, PD-L1 and PD-L2 protein expression, and EBER status were performed while blinded to the clinical data. Clinical characteristics of the patients with cHL were assessed by using descriptive statistics. Associations between variables were evaluated with Fisher exact test for categorical data and Wilcoxon or Kruskal-Wallis rank sum test for continuous data that compared two or more groups, respectively. The modified H-score for PD-L1 and PD-L2 protein expression was divided into four equally sized groups (quartiles), and locally weighted polynomial smoothing was used to fit a trend line over the data. All P values were twosided. Progression-free survival (PFS) was defined from the date of diagnosis until the date of relapse or death in the absence of relapse or was censored at the date of last contact. Time-to-event analyses were performed by using the Kaplan-Meier method, and errors were calculated by Greenwood formula. Differences in survival curves were assessed with logrank tests. Multivariable Cox proportional hazards models were fit and evaluated by using likelihood ratio tests. Two-sided P < .05 was considered statistically significant, and no corrections for multiple comparisons were performed.

#### RESULTS

#### Patient Characteristics

The characteristics of the 108 patients with newly diagnosed cHL are summarized in Table 1. The median age was 30 years, and the majority of patients (93 of 108 [86%]) had nodular sclerosis HL, 11% (12 of 108) had mixed-cellularity HL, and 3% (three of 108) had cHL not otherwise specified. Patients were classified on the basis of disease stage and the presence or absence of B symptoms and/or bulky disease as ES-F (no bulky disease or B

symptoms, n = 33), ES-U (bulky disease and/or B symptoms, n = 41), or AS (n = 34).

#### Genetic Analyses of the PD-L1 and PD-L2 Loci

A recently developed FISH assay was used to characterize 9p24.1/*PD-L1*/*PD-L2* alterations in diagnostic FFPE tumor specimens from each patient (Fig 1A).<sup>13,18</sup> RS cells were scored as having 9p24.1 disomy, polysomy, copy gain, or amplification, and the magnitude of 9p24.1 gain and percentage of cells with each alteration was noted (representative images in Fig 1B). Cases were classified by the highest observed level of 9p24.1 alteration.

# Frequency of the 9p24.1 Alterations in cHL

Almost all of the 108 patients in this series had concordant alterations of the *PD-L1* and *PD-L2* loci in their diagnostic biopsy specimens. Only one patient (1%) had normal 9p24.1 copy numbers (disomy), and five (5%) had polysomy of 9p. In marked contrast, 56% (61 patients) had 9p24.1 copy gain, and 36% (39 patients) had 9p24.1 amplification (Table 2). There was an association between PD-L1 and PD-L2 protein expression and 9p24.1 genetic alterations in the RS cells (Fig 1C). RS cells also expressed pSTAT3, indicative of active JAK-STAT signaling (Fig 1C). Of note, two of the cHL cases had a chromosomal rearrangement of 9p24.1 detected by a split of the red and green FISH signals (Table 2; Appendix Fig A1, online only).

# Spectrum of 9p24.1 Alterations in cHL

By analyzing each case with FISH, we were able to assess the full spectrum of 9p24.1 alterations in each tumor. In cases classified by the highest observed level of 9p24.1 alteration, we also identified RS cells with lower-level 9p24.1 CNAs (Table 2; Appendix Table A1; Fig 2A). Specifically, all cases classified as having 9p24.1 amplification had additional RS cells with 9p24.1 copy gain (2% to 82% of cells), 9p polysomy (2% to 52% of cells), and/or 9p24.1 residual disomy (2% to 35% of cells;

| Characteristic                      | All (N = 108) | Early Stage<br>Favorable (n = 33) | Early Stage<br>Unfavorable (n = 41) | Advanced<br>Stage (n = 34) |
|-------------------------------------|---------------|-----------------------------------|-------------------------------------|----------------------------|
| Age, years                          |               |                                   |                                     |                            |
| Median (range)                      | 30 (18-69)    | 30 (18-56)                        | 29 (18-66)                          | 29 (19-69)                 |
| Stage, No. (%)                      |               |                                   |                                     |                            |
| - T                                 | 9 (8)         | 8 (24)                            | 1 (2)                               | _                          |
| II                                  | 65 (60)       | 25 (76)                           | 40 (98)                             | _                          |
| III                                 | 22 (20)       | _                                 | _                                   | 22 (65)                    |
| IV                                  | 12 (11)       | _                                 | _                                   | 12 (35)                    |
| Bulky, No. (%)                      |               |                                   |                                     |                            |
| > 10 cm                             | 16 (15)       | _                                 | 12 (29)                             | 4 (12)                     |
| $\geq$ 0.33x mediastinal mass ratio | 19 (18)       | _                                 | 11 (27)                             | 8 (24)                     |
| Both                                | 15 (14)       | _                                 | 8 (20)                              | 7 (21)                     |
| B symptoms, No. (%)                 | 39 (36)       | _                                 | 18 (44)                             | 21 (62)                    |
| Histologic subtype, No. (%)         |               |                                   |                                     |                            |
| Nodular sclerosis                   | 93 (86)       | 25 (76)                           | 39 (95)                             | 29 (85)                    |
| Mixed cellularity                   | 12 (11)       | 8 (24)                            | 1 (2)                               | 3 (9)                      |
| cHL, not otherwise specified        | 3 (3)         | _                                 | 1 (2)                               | 2 (6)                      |

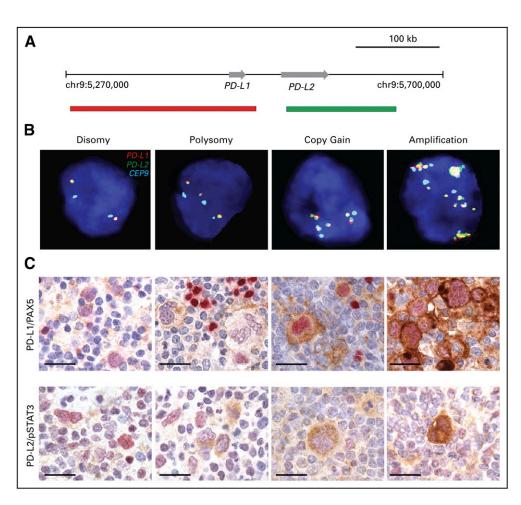


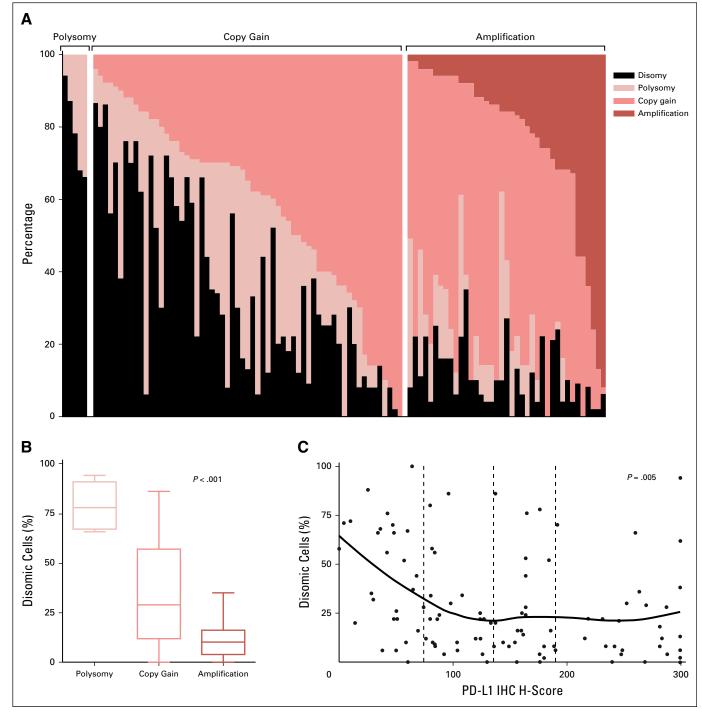

Fig 1. Genetic and immunohistochemical analyses of the PD-L1 and PD-L2 loci and PD-1 ligand expression. (A) Location and color labeling of the bacterial artificial chromosome (chr) clones on 9p24.1 used for fluorescent in situ hybridization (FISH). RP11-599H20 including PD-L1, labeled red. RP11-635N21 including PD-L2, labeled green. (B) Representative images of FISH results for the various categories. PD-L1 in red, PD-L2 in green, fused (F) signals in yellow, and centromeric probe (CEP9) in aqua (A). In these images, disomy reflects 2A:2F; polysomy, 3A:3F; copy gain, 3A:6F; and amplification, 15+F. (C) The top panel shows PD-L1 (brown)/PAX5 (red) immunohistochemistry (IHC) in the classical Hodgkin lymphoma (cHL) cases with 9p24.1 disomy, polysomy, copy gain, and amplification from (B). The bottom panel shows PD-L2 (brown)/pSTAT3 (red) IHC in the same cHL cases. Scale bar =  $50 \mu m$ .

Table 2; Appendix Table A1; Fig 2A). Similarly, cases identified as having 9p24.1 copy gain included additional RS cells with 9p polysomy (4% to 78% of cells) and/or 9p24.1 residual disomy (2% to 86% of cells; Table 2; Appendix Table A1; Fig 2A). In cases classified as polysomic for chromosome 9p, additional RS cells were disomic for 9p24.1 (66% to 93% of cells; Table 2; Appendix Table A1; Fig 2A).

As shown in Figure 2A, there was a spectrum of 9p24.1 alterations in the evaluated cHL series that ranged from low-level polysomy (6% polysomic RS cells) to near-uniform 9p24.1 amplification (92% amplified RS cells). Consistent with the

ordered spectrum of 9p24.1 alterations in this series (Fig 2A), the percentage of residual 9p24.1 disomic cells was highest in cases classified as polysomic for 9p, intermediate in tumors with 9p24.1 copy gain, and lowest in tumors with 9p24.1 amplification (P < .001, Kruskal-Wallis test; Fig 2B).

# 9p24.1 Alterations and PD-1 Ligand Expression


After characterizing the spectrum of 9p24.1 CNAs in the cHL series, we assessed the relationship between these alterations and expression of the PD-1 ligands. Given the inverse relationship between 9p24.1 alterations and residual 9p24.1 disomy (Figs 2A

| Additional Alterations |                                   |                              |                         |                            |         |                            |         |                            |         |                            |         |  |
|------------------------|-----------------------------------|------------------------------|-------------------------|----------------------------|---------|----------------------------|---------|----------------------------|---------|----------------------------|---------|--|
|                        |                                   |                              |                         | Disom                      | ý       | Polyson                    | ηγ      | Copy Ga                    | iin     | Amplifica                  | tion    |  |
| Cytogenetics           | Patients<br>(N = 108),<br>No. (%) | % Positive Cells<br>per Case | Median No.<br>of Copies | No. of Cases/<br>Total (%) | % Cells |  |
| Disomy                 | 1 (1)                             | 100                          | 2                       | NA                         | NA      | _                          | _       | —                          | _       | _                          | _       |  |
| Polysomy               | 5 (5)                             | 6-34                         | 3                       | 5/5 (100)                  | 66-94   | NA                         | NA      | _                          | _       | _                          | _       |  |
| Copy gain              | 61 (56)                           | 4-100                        | 6                       | 58/61 (95)                 | 2-86    | 57/61 (93)                 | 4-78    | NA                         | NA      | _                          | _       |  |
| Amplification          | 39 (36)                           | 2-92                         | 10+                     | 35/39 (90)                 | 2-35    | 25/39 (64)                 | 2-52    | 39/39 (100)                | 2-82    | NA                         | NA      |  |
| Translocation          | 2 (2)                             | 72-88                        | NA                      | 2/2 (100)                  | 4-22    | 2/2 (100)                  | 6-8     | _                          | _       | _                          | _       |  |

4 © 2016 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americarfi@arcietto.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016



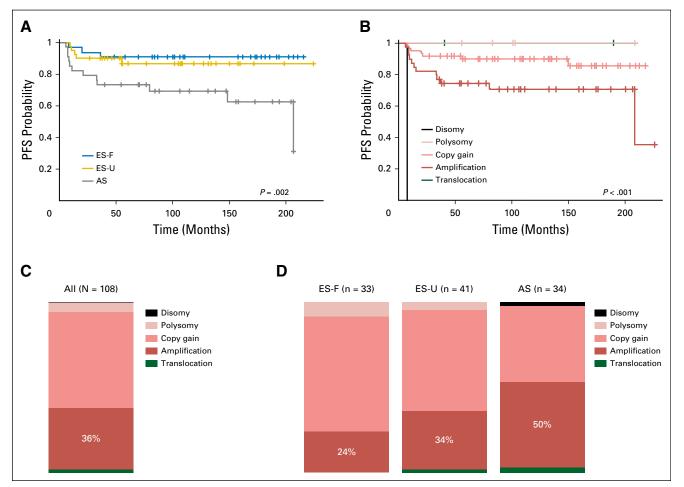
**Fig 2.** The spectrum of 9p24.1 alterations in classical Hodgkin lymphoma (cHL). (A) 9p24.1 alterations in evaluated cHLs. The cHLs are classified by the highest observed level of 9p24.1 alteration in Reed-Sternberg (RS) cells: polysomy, copy gain, or amplification (top). Individual tumors are depicted as columns on the *x*-axis. In each cHL, the percentage of RS cells with 9p24.1 disomy (black), polysomy (light pink), copy gain (pink), and/or amplification (red) is shown on the *y*-axis. (B) Percentage of RS cells with residual 9p24.1 disomy in cHLs classified by 9p24.1 alterations, as represented as box-and-whisker plots, showing minimum, first quartile, median, third quartile, and maximum. cHLs with 9p24.1 polysomy, copy gain, and amplification have significantly different percentages of residual 9p24.1 disomy is depicted on the *y*-axis; PD-L1 immunohistochemistry (IHC) H-score (in quartile) is shown on the *x*-axis. Quartiles are indicated by dashed lines. A locally weighted polynomial regression line is shown in black. A highly significant decrease in percentage of residual 9p24.1 disomic cells in cHLs with a higher PD-L1 IHC H-score is shown. *P* = .005, Kruskal-Wallis test

and 2B), we used residual 9p24.1 disomy and the PD-L1 H-score (percentage of malignant cells with positive staining multiplied by the average intensity of positive staining, divided into quartiles) for

these analyses. A highly significant association was found between decreased residual 9p24.1 disomy and increased PD-L1 expression (P = .005, Kruskal-Wallis test; Fig 2C; Appendix Fig A2A). Similar

© 2016 by American Society of Clinical Oncology 5

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americanfision: etgo: 2016 Ame results were obtained for PD-L2 protein expression (Appendix Figs A2B and A2C).


The distribution of genetic alterations in patients with EBVnegative and EBV-positive cHL was similar in this series (Appendix Fig A3). However, EBV-positive cHLs were more likely to have high PD-L1 H-scores (Appendix Fig A3), indicating further induction of PD-L1 expression by viral infection.

# 9p24.1 Alterations, Clinical Risk Factors, and Outcome

After characterizing the *PD-L1/PD-L2* alterations in this series of patients, we assessed potential associations among these genetic lesions, clinical risk factors, and outcome. First, PFS was assessed for patients with ES-F, ES-U, and AS disease. The outcome for patients with ES-F and ES-U disease was comparable possibly partly due to the more-aggressive treatment of ES-U disease (Fig 3A). As expected, patients with AS disease had a significantly inferior outcome compared with those with ES disease (P = .002, log-rank test; Fig 3A). We next assessed the PFS for patients by 9p24.1 genetic alteration and identified significant differences in outcome that were most striking for patients with 9p24.1 amplification (P < .001, log-rank test; Fig 3B).

The significantly decreased PFS in patients with AS disease (Fig 3A) and 9p24.1 amplification (Fig 3B) prompted us to assess the distribution of 9p24.1 alterations in the clinical risk groups (Figs 3C [all patients] and 3D [risk groups]). The incidence of 9p24.1 amplification increased by clinical risk group (ES-F, 24%; ES-U, 34%; AS, 50%; P = .024, Kruskal-Wallis test; Fig 3D). We next determined the effect of 9p24.1 amplification on PFS in the various clinical risk groups. Although the small numbers limited the statistical analysis, there was a trend toward worse outcome in patients with ES-U and AS disease who had 9p24.1 amplification (Appendix Fig A4).

We next assessed the independent prognostic significance of the clinical risk factors, ES-U and AS, and 9p24.1 amplification in Cox univariable and multivariable models. In respective univariable models, the clinical risk factor, AS disease, and 9p24.1 amplification had independent prognostic significance (P = .017and .02, respectively; Table 3 [top and middle panels]). Despite the association of 9p24.1 amplification with AS disease (Fig 3D), the



**Fig 3.** Clinical and genetic predictors of progression-free survival (PFS). (A) PFS by clinical stage in patients with classical Hodgkin lymphoma (cHL), early stage favorable (ES-F; n = 33), early stage unfavorable (ES-U; n = 41), and advanced stage (AS; n = 34). P = .002, log-rank test. (B) PFS by 9p24.1 alterations in patients with cHL (disomy, n = 1; polysomy, n = 5; copy gain, n = 61; amplification, n = 39; translocation, n = 2; P < .001, log-rank test). (C) Percentage of patients with 9p24.1 disomy (1%), polysomy (5%), copy gain (56%), amplification (36%), and translocation (1%) in the current series. (D) Frequency of 9p24.1 alterations (polysomy, copy gain, amplification, translocation, or disomy) by clinical stage (ES-F, ES-U, and AS) in this series. The incidence of 9p24.1 amplification is significantly different in clinically staged patients (ES-F, 24%; ES-U, 34%; AS, 50%; P = .024, Kruskal-Wallis test).

#### 6 © 2016 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americarfi@arcietto.ascorected. All rights reserved.

| Table 3. Clinical and Genetic Univariable and Multivariable Risk Models |       |              |              |      |  |  |  |  |
|-------------------------------------------------------------------------|-------|--------------|--------------|------|--|--|--|--|
| Variable                                                                | HR    | Lower 95% CI | Upper 95% CI | Р    |  |  |  |  |
| Clinical factors*                                                       |       |              |              |      |  |  |  |  |
| Stage I/II, B symptoms and/or bulky disease                             | 1.59  | 0.377        | 6.703        | .53  |  |  |  |  |
| Stage III/IV                                                            | 4.68  | 1.319        | 16.616       | .017 |  |  |  |  |
| Presence of amplification†                                              |       |              |              |      |  |  |  |  |
| Yes                                                                     | 2.9   | 1.186        | 7.106        | .02  |  |  |  |  |
| Full model‡                                                             |       |              |              |      |  |  |  |  |
| Stage I/II, B symptoms and/or bulky disease                             | 1.43  | 0.339        | 6.041        | .63  |  |  |  |  |
| Stage III/IV                                                            | 3.76  | 1.035        | 13.662       | .044 |  |  |  |  |
| Amplification                                                           | 2.292 | 0.919        | 5.721        | .075 |  |  |  |  |

Abbreviation: HR, hazard ratio.

\*The clinical stages (early stage favorable, early stage unfavorable, advanced stage [AS]) were used to classify patients into risk groups for progression-free survival. The HR estimate for patients with AS (III/IV) disease was significant (*P* = .017).

The presence or absence of 9p24.1 amplification was used to classify patients into risk groups for progression-free survival. In a univariable Cox model, 9p24.1 amplification was significant (P = .02).

 $\pm$ The multivariable Cox model includes the risk factors with independent prognostic significance (9p24.1 amplification and AS disease) and the additional clinical risk factors that influenced treatment (stage I/II, B symptoms, and/or bulky disease). In this multivariable model, the HR for AS retains significance (*P* = .044; *P* for amplification = .075).

genetic alteration further delineated PFS in a multivariable model (P = .075; Table 3).

#### DISCUSSION

We use a 9p24.1 FISH assay to determine the incidence, nature, and prognostic significance of *PD-L1* and *PD-L2* alterations in a series of patients with cHL who were uniformly treated and have long-term outcome data. Almost all the cases in this series had concordant alterations of the *PD-L1* and *PD-L2* loci, which included copy gain and amplification in the majority of tumors (56% and 36%, respectively). There was a spectrum of 9p24.1 alterations in the analyzed cases that ranged from low-level polysomy to near-uniform 9p24.1 amplification. Of note, PFS was significantly shorter for patients with 9p24.1 amplification who were also more likely to have AS disease.

The current studies indicate that PD-L1/PD-L2 CNAs are a defining feature of cHL, seen with near uniformity in patients evaluated with the FISH assay. Previous genetic analyses of cHL were hampered by the rarity of RS cells in primary tumors. As a consequence, analyses of genetic alterations in cHL required laser capture microdissection of malignant RS cells.<sup>6,20,21</sup> In these studies, which relied on array-based comparative genomic hybridization or quantitative polymerase chain reaction, the frequency of PD-L1/PD-L2 CNAs was approximately 40% to 50%.<sup>6,20,21</sup> In such analyses, laser capture microdissected RS specimens included surrounding residual normal tissue, which likely caused an underestimate in PD-L1/PD-L2 copy numbers.

The current studies also indicate that 9p24.1 alterations are subclonal in a subset of primary cHLs. Specifically, these tumors exhibited the full spectrum of 9p24.1 alterations, which ranged from low-level polysomy (6% polysomic RS cells) to nearuniform 9p24.1 amplification (92% amplified RS cells). Consistent with these findings, the percentage of residual 9p24.1 disomic cells was inversely related to *PD-L1/PD-L2* CNAs and highest in cHLs classified as polysomic for 9p, intermediate in tumors with 9p24.1 copy gain, and lowest in tumors with 9p24.1 amplification. In cHLs with significant residual disomy, platformbased approaches, such as assay-based comparative genomic hybridization or high-density single nucleotide polymorphism array, or quantitative polymerase chain reaction analyses are likely to underestimate the frequency of 9p24.1 alterations.<sup>6,20,21</sup> These findings may also explain the lower incidence of 9p24.1 CNAs in a small series of flow-sorted CD30<sup>+</sup> RS cells evaluated by whole-exome sequencing.<sup>22</sup>

Although 9p24.1 alterations were identified in almost all patients with cHL in this series, the highest-level lesion—amplification—was more common in patients with AS disease. This finding suggests that PD-1-mediated immune evasion may limit local containment and foster tumor spread. In addition, the data provide the rationale for evaluating PD-1 blockade in the frontline setting in patients with AS cHL who may have less-favorable outcomes with standard empirical combination chemotherapy. Given these findings, further analyses of the 9p24.1 alteration in patients treated with standard cHL induction regimens or checkpoint blockade are warranted.

The high frequency of 9p24.1 alterations in cHL prompted further assessment of the *PD-L1* and *PD-L2* loci in other lymphoid malignancies. Several lymphomas have been found to have frequent *PD-L1/PD-L2* CNAs and additional chromosomal translocations of the same loci. Like cHL, certain large B-cell lymphoma subtypes, including primary mediastinal large B-cell lymphoma, primary CNS lymphoma, and primary testicular lymphoma, often have *PD-L1/PD-L2* CNAs or chromosomal rearrangements and increased expression of the PD-1 ligands.<sup>6,18,23,24</sup> In marked contrast, systemic diffuse large B-cell lymphomas rarely exhibit 9p24.1/*PD-L1/PD-L2* CNAs and infrequently express the associated PD-1 ligands.<sup>18,25,26</sup>

Taken together, these data support a strategy for identifying lymphoid malignances with genetic bases for PD-1–mediated tumor immune evasion. In cHL, the near-uniform alterations of the *PD-L1/PD-L2* loci likely explain the remarkable activity of PD-1 blockade in this disease.<sup>13</sup>

#### AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at www.jco.org.

## **AUTHOR CONTRIBUTIONS**

Conception and design: Margaretha G.M. Roemer, Ranjana H. Advani, Azra H. Ligon, Yasodha Natkunam, Scott J. Rodig, Margaret A. Shipp

#### REFERENCES

1. Gordon LI, Hong F, Fisher RI, et al: Randomized phase III trial of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: An intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J Clin Oncol 31:684-691, 2013

2. Hoskin PJ, Lowry L, Horwich A, et al: Randomized comparison of the Stanford V regimen and ABVD in the treatment of advanced Hodgkin's Lymphoma: United Kingdom National Cancer Research Institute Lymphoma Group Study ISRCTN 64141244. J Clin Oncol 27:5390-5396, 2009

**3.** Advani RH, Hong F, Fisher RI, et al: Randomized phase III trial comparing ABVD plus radiotherapy with the Stanford V regimen in patients with stages I or II locally extensive, bulky mediastinal Hodgkin lymphoma: A subset analysis of the North American Intergroup E2496 trial. J Clin Oncol 33: 1936-1942, 2015

4. Armitage JO: Early-stage Hodgkin's lymphoma. N Engl J Med 363:653-662, 2010

5. Kuruvilla J, Keating A, Crump M: How I treat relapsed and refractory Hodgkin lymphoma. Blood 117:4208-4217, 2011

6. Green MR, Monti S, Rodig SJ, et al: Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268-3277, 2010

7. Juszczynski P, Ouyang J, Monti S, et al: The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 104: 13134-13139, 2007

8. Küppers R: The biology of Hodgkin's lymphoma. Nat Rev Cancer 9:15-27, 2009 9. Steidl C, Shah SP, Woolcock BW, et al: MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377-381, 2011

**10.** Green MR, Rodig S, Juszczynski P, et al: Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin Cancer Res 18:1611-1618, 2012

**11.** Keir ME, Butte MJ, Freeman GJ, et al: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677-704, 2008

12. Weber J: Immune checkpoint proteins: A new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37: 430-439, 2010

13. Ansell SM, Lesokhin AM, Borrello I, et al: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372:311-319, 2015

14. Ansell S, Armand P, Timmerman JM, et al: Nivolumab in patients (pts) with relapsed or refractory classical Hodgkin lymphoma (R/R cHL): Clinical outcomes from extended follow-up of a phase 1 study (CA209-039). Presented at the 57th Annual Meeting of the American Society of Hematology, Orlando, FL, December 4-8, 2015 (abstr 583)

**15.** Armand P, Shipp MA, Ribrag V, et al: PD-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: Safety, efficacy, and biomarker assessment. Presented at the 57th Annual Meeting of the American Society of Hematology, Orlando, FL, December 4-8, 2015 (abstr 584)

**16.** Advani RH, Hoppe RT, Baer D, et al: Efficacy of abbreviated Stanford V chemotherapy and involved-field radiotherapy in early-stage Hodgkin lymphoma: Mature results of the G4 trial. Ann Oncol 24:1044-1048, 2013

**17.** Horning SJ, Hoppe RT, Breslin S, et al: Stanford V and radiotherapy for locally extensive and advanced Hodgkin's disease: Mature results of a prospective clinical trial. J Clin Oncol 20:630-637, 2002

Provision of study materials or patients: Ranjana H. Advani, Yasodha Natkunam, Richard T. Hoppe

**Collection and assembly of data:** Margaretha G.M. Roemer, Ranjana H. Advani, Robert A. Redd, Heather Homer, Courtney F. Connelly, Heather H. Sun, Sarah E. Daadi, Bjoern Chapuy, Donna S. Neuberg, Scott J. Rodig, Margaret A. Shipp

Data analysis and interpretation: Margaretha G.M. Roemer, Ranjana H. Advani, Azra H. Ligon, Yasodha Natkunam, Robert A. Redd, Gordon J. Freeman, Philippe Armand, Bjoern Chapuy, Daphne de Jong, Richard T. Hoppe, Donna S. Neuberg, Scott J. Rodig, Margaret A. Shipp Manuscript writing: All authors

Final approval of manuscript: All authors

**18.** Chapuy B, Roemer MG, Stewart C, et al: Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016 127:869-881

19. Mahoney KM, Sun H, Liao X, et al: PD-L1 antibodies to its cytoplasmic domain most clearly delineate cell membranes in immunohistochemical staining of tumor cells. Cancer Immunol Res 3:1308-1315, 2015

**20.** Steidl C, Telenius A, Shah SP, et al: Genomewide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood 116: 418-427, 2010

**21.** Hartmann S, Martin-Subero JI, Gesk S, et al: Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization. Haematologica 93:1318-1326, 2008

22. Reichel J, Chadburn A, Rubinstein PG, et al: Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061-1072, 2015

**23.** Shi M, Roemer MG, Chapuy B, et al: Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with *PDCD1LG2* copy gain. Am J Surg Pathol 38: 1715-1723, 2014

**24.** Twa DD, Chan FC, Ben-Neriah S, et al: Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123:2062-2065, 2014

**25.** Chen BJ, Chapuy B, Ouyang J, et al: PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19:3462-3473, 2013

**26.** Kiyasu J, Miyoshi H, Hirata A, et al: Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 126:2193-2201, 2015

# **GLOSSARY TERMS**

**copy number alteration (CNA):** a structural variation in the genome with an increased (amplification) or decreased (deletion) number of copies of a gene or region.

**Epstein-Barr virus (EBV):** virus belonging to the herpes family of viruses. EBV is also called human herpes virus 4 and is an oncogenic virus that is responsible for B-cell transformation. It is associated with Hodgkin lymphoma, immunoblastic B-cell lymphomas, Burkitt's lymphoma, and nasopharyngeal carcinoma.

**FISH (fluorescent in situ hybridization):** in situ hybridization is a sensitive method generally used to detect specific gene sequences in tissue sections or cell preparations by hybridizing the complementary strand of a nucleotide probe to the sequence of interest. FISH uses a fluorescent probe to increase the sensitivity of in situ hybridization.

**PD-1:** programmed cell death protein 1 (CD279), a receptor expressed on the surface of activated T, B, and NK cells that negatively regulates immune responses, including autoimmune and antitumor responses.

8 © 2016 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americanf Society 2120270ncology. All rights reserved.

#### **AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST**

#### PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Margaretha G.M. Roemer No relationship to disclose

#### Ranjana H. Advani

**Consulting or Advisory Role:** Genentech, FortySeven, Kyowa Hakko Kirin **Research Funding:** Millennium Pharmaceuticals (Inst), Seattle Genetics (Inst), Genentech (Inst), Allos Therapeutics (Inst), Pharmacyclics (Inst), Janssen Pharmaceuticals (Inst), Celgene (Inst), Idera Pharmaceuticals (Inst), Agensys (Inst), Merck, Kura Oncology, Regeneron Pharmaceuticals, Infinity Pharmaceuticals

Travel, Accommodations, Expenses: Kyowa Hakko Kirin

Azra H. Ligon No relationship to disclose

Yasodha Natkunam Honoraria: Ventana Medical Systems Travel, Accommodations, Expenses: Ventana Medical Systems

**Robert A. Redd** No relationship to disclose

**Heather Homer** No relationship to disclose

**Courtney F. Connelly** No relationship to disclose

Heather H. Sun No relationship to disclose

**Sarah E. Daadi** No relationship to disclose

#### Gordon J. Freeman

**Stock or Other Ownership:** CoStim Pharmaceuticals, CoStim Pharmaceuticals (I)

**Consulting or Advisory Role:** Novartis, Novartis (I), Eli Lilly, Surface Oncology (I), Genentech, Bristol-Myers Squibb

**Patents, Royalties, Other Intellectual Property:** Genentech, Genentech (I), Pfizer (I), Medarex, Amplimmune, Merck, EMD Serono, Boehringer Ingelheim, Novartis, Novartis (I)

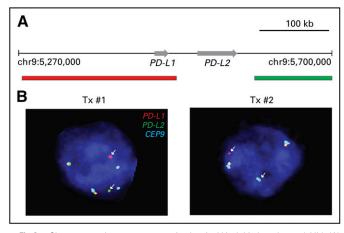
Philippe Armand

**Consulting or Advisory Role:** Bristol-Myers Squibb, Merck, Infinity Pharmaceuticals **Research Funding:** Bristol-Myers Squibb, Merck, Sequenta, Sigma Tau Pharmaceuticals, Otsuka, Tensha Therapeutics

**Bjoern Chapuy** No relationship to disclose

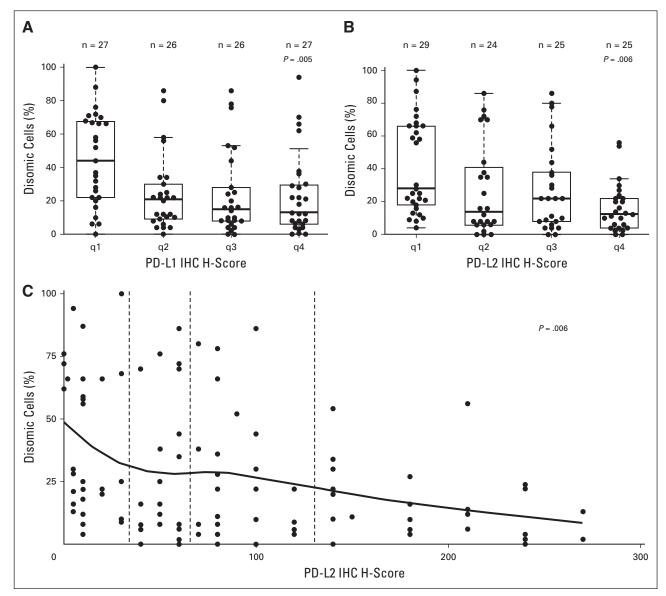
Daphne de Jong No relationship to disclose

**Richard T. Hoppe** No relationship to disclose


Donna S. Neuberg Stock or Other Ownership: Synta Pharmaceuticals

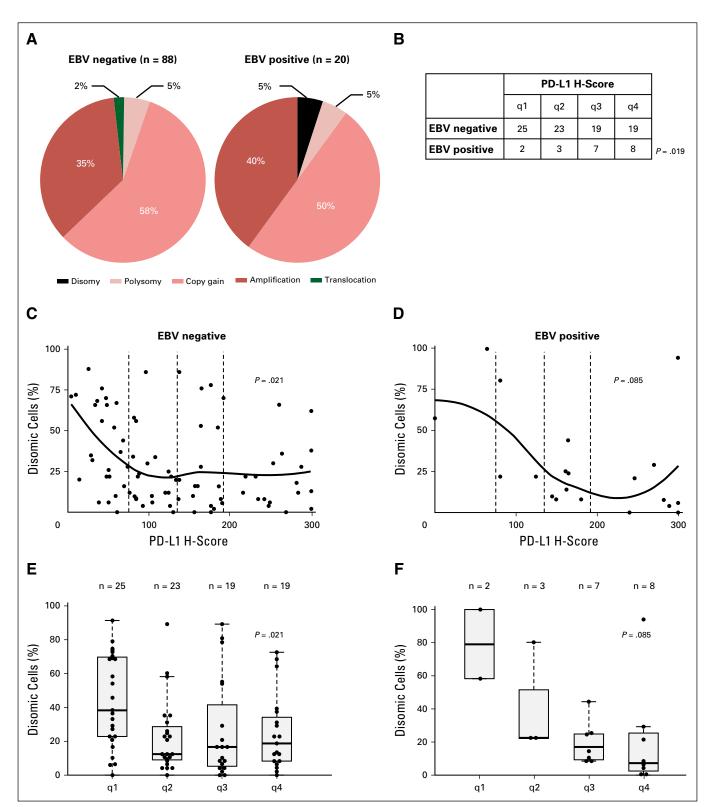
Scott J. Rodig Honoraria: PerkinElmer, Bristol-Myers Squibb Consulting or Advisory Role: AstraZeneca, PerkinElmer Research Funding: Bristol-Myers Squibb Patents, Royalties, Other Intellectual Property: Patent pending for use of anti-galectin 1 antibodies for diagnostic use. Travel, Accommodations, Expenses: Roche

#### Margaret A. Shipp


Honoraria: Bristol-Myers Squibb, Merck, Gilead Sciences, Takeda Pharmaceuticals
Consulting or Advisory Role: Bristol-Myers Squibb, Merck, Gilead Sciences, Takeda Pharmaceuticals
Research Funding: Bristol-Myers Squibb (Inst), Bayer AG (Inst) Travel, Accommodations, Expenses: Bristol-Myers Squibb

#### Appendix

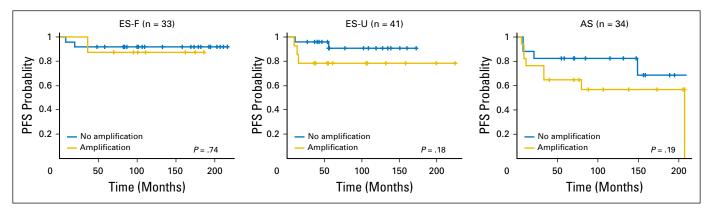



**Fig A1.** Chromosomal rearrangements in classical Hodgkin lymphoma (cHL). (A) Location and color labeling of the bacterial artificial chromosome (chr) clones on 9p24.1 used for fluorescent in situ hybridization (FISH) in translocation 2 (Tx #2). RP11-599H20 including *PD-L1*, labeled red; RP11-610G2 downstream of *PD-L2*, labeled green. For labeling of bacterial artificial chromosome clones used for translocation 1 (Tx #1), see Figure 1A. (B) FISH analyses of the cHL cases with chromosomal rearrangements. *PD-L1* in red, *PD-L2* in green, and centromeric probe (CEP9) in aqua. Arrows indicate the rearranged allele.

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 AmericarfiSociet902123li202aPOncology. All rights reserved.



**Fig A2.** Association of PD-L1/PD-L2 protein expression and 9p24.1 copy number alterations. (A) Percentage of 9p24.1 disomic cells in each of the PD-L1 immunohistochemistry (IHC) H-score quartiles. The y-axis shows the percentage of residual 9p24.1 disomic cells; the x-axis shows PD-L1 IHC H-score in quartiles. A statistically significant decrease in the percentage of normal (disomic) cells in the H-score quartiles was found. P = .005, Kruskal-Wallis test. (B) Percentage of residual 9p24.1 disomic cells in each of the PD-L2 IHC H-score quartiles. The y-axis shows the percentage of residual 9p24.1 disomic cells; the x-axis shows the PD-L2 IHC H-score in quartiles. The percentage of residual 9p24.1 disomic cells is statistically different in the quartiles. P = .006, Kruskal-Wallis test. (C) Percentage of residual 9p24.1 disomic cells (y-axis) and PD-L2 IHC H-score (x-axis) plotted for individual cases. Quartiles are indicated with dashed lines, and a trend line (locally weighted polynomial regression line) is shown in black. q, quartile.


© 2016 by American Society of Clinical Oncology



**Fig A3.** Distribution of genetic alterations in patients with Epstein-Barr virus (EBV) –negative and EBV-positive classical Hodgkin lymphoma (cHL). (A) The status of *PD-L1* and *PD-L2*—disomy, polysomy, copy gain, amplification, and translocation—in EBV-negative (n = 88) and EBV-positive (n = 20) cHLs is visualized with a pie chart. (B) Distribution of EBV-negative and EBV-positive cases in the various PD-L1 immunohistochemistry (IHC) H-score quartiles. The proportion of EBV-positive cases increases as the H-score quartile category increases. *P* = .019, Kruskal-Wallis test. (C) and (D) Percentage of 9p24.1 residual disomic cells (*y*-axis) and PD-L1 IHC H-score (*x*-axis) plotted for individual EBV-negative and EBV-positive cHLs, respectively. Quartiles are indicated with dashed lines, and a trend line (locally weighted polynomial regression line) is shown in black. (E) and (F) Percentages of residual 9p24.1 disomic cells in EBV-negative and EBV-positive cHLs in (E). *P* = .021, Kruskal-Wallis test. q, quartile.

© 2016 by American Society of Clinical Oncology

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americarfi**3**0ciet902/23/2020/70ncology. All rights reserved.



**Fig A4.** Progression-free survival (PFS) curves for the clinical risk groups with (gold) or without (blue) 9p24.1 amplification: early stage favorable (ES-F; n = 8 and n = 25, respectively), early stage unfavorable (ES-U; n = 14 and n = 27, respectively), and advanced stage (AS; n = 17 and n = 17, respectively).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    | Table A1. 9 | p24.1 Fluores | scent In Situ Hyb | oridization A    | Analyses in the 10 | 8 Patients With Cla | ssical Hodgkin L | ymphoma           |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-------------|---------------|-------------------|------------------|--------------------|---------------------|------------------|-------------------|------------------|
| 2       46       78       22       3       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                      |    |    | Disomy (%)  |               | No. of Copies     | Copy<br>Gain (%) | No. of Copies      | Amplification (%)   | No. of Copies    | Translocation (%) | No. of<br>Copies |
| 3       50       68       32       35       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td>                                                                                                                  |    |    |             |               |                   |                  | _                  | _                   | _                | _                 | _                |
| 4         50         64         34         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>—</td> <td></td> <td></td> <td>—</td> <td>—</td> |    |    |             |               |                   |                  | —                  |                     |                  | —                 | —                |
| 5       00       06       34       34       -       -       -       -       -         7       00       06       34       35       9       3F2A       -       -       -       -         7       00       07       34       35       9       3F2A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>—</td> <td></td> <td></td> <td>—</td> <td>—</td>                                                                                                                          |    |    |             |               |                   |                  | —                  |                     |                  | —                 | —                |
| 6       51       86       10       3       4       3.47.23A       -       -       -       -         8       80       80       36       36       9       367.24A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>—</td> <td>_</td> <td></td> <td>—</td> <td>—</td>                                                                                                           |    |    |             |               |                   | -                | —                  | _                   |                  | —                 | —                |
| 7       80       80       14       3       6       3F2AA       -       -       -       -         9       80       70       12       34       12       34F2AA       -       -       -       -         9       80       70       12       34       23       34F2AA       -       -       -       -         11       43       12       34F2AA       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                        |    |    |             |               |                   |                  | 2 45:2 24          |                     |                  | —                 | —                |
| 8       50       56       36       3-5       8       3-57-24A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                             |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 9         50         76         12         34         22         347-23A              111         49         59         12         35         29         347-24A              12         49         23         236         239         347-24A              13         10         239         246         337-24A              14         14         17         3         36         377-24A              16         41         44         17         3         36         310+7-2AA              18         50         22         28         37         60         347+72A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 10       50       72       6       34       22       347:26A       -       -       -       -         11       48       22       48       35       23       347:24A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                        |    |    |             |               |                   |                  |                    |                     |                  |                   | _                |
| 11       49       59       12       36       29       367.24A            13       51       30       39       346       31       267.14A            13       51       30       39       346       347.24A            14       48       13       22       36       39       347.24A            16       44       44       37       36       42       310.75.64A            18       50       22       28       3.7       50       387.16A             20       54       28       11       3.4       61       367.16A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 12       49       22       49       35       29       35724A            14       48       13       52       34       35       34725A            15       49       34       29       35       38       37254A            16       40       30       36       32       375760       387164A            17       9       38       36       53       14674A             19       77       9       38       36       53       14674A                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 13       61       30       39       36       31       267:14A            15       48       13       12       346       38       387:24A            16       41       44       17       3       33       347:23A             17       50       22       38       347       347:23A              18       07       22       38       347       347:24A                                                                <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 15       49       33       29       36       38       37 $2$ -AA       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                  | 13 | 51 |             |               |                   |                  | 2-5F:1-4A          | -                   | _                | _                 | _                |
| 16       41       44       17       3       39 $34F_23A$ -       -       -       -         18       50       22       28 $37$ 50 $38F_1FAA$ -       -       -       -         20       54       28       11 $346$ 61 $38F_1FAA$ -       -       -       -         21       50       20       12 $34$ 61 $38F_1FAA$ -       -       -       -         22       50       20       18       6 $38F_1FAA$ -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    | -                   | _                | _                 | _                |
| 17       50       20       38       36       42 $3^{10}$ fb2 ab $                                                                                                  -$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 | 49 |             | 29            | 3-5               | 38               |                    | -                   | —                | —                 | —                |
| 18       50       22       28       3-7       50       34F:16A       -       -       -       -         20       54       28       11       3.46       63       19F:14A       -       -       -       -         21       50       20       12       3       68       3.67:14A       -       -       -       -         22       50       8       22       3.4       70       3.10+F2.7A       -       -       -       -         24       50       8       6       3       86       3.67:4A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>16</td> <td>41</td> <td></td> <td>17</td> <td>3</td> <td>39</td> <td>3-4F:2-3A</td> <td>-</td> <td>—</td> <td>—</td> <td>—</td>                                                                                              | 16 | 41 |             | 17            | 3                 | 39               | 3-4F:2-3A          | -                   | —                | —                 | —                |
| 19       47       9       38       36       53       10f:16A            21       50       20       12       3       68       38F1:3A            22       50       8       22       34       70       310:F27A            23       52       11       6       3       88       37F1:4A            24       50       8       6       3       88       38F2:AA            27       50       6       8       344       74       39F2:FA       12       79F          28       50       10       12       344       66       39F1:FA       13       50:FF          30       48       4       10       46       73       110:F1:BA       13       51:04F          31       49       27       16       344       38F2:5A       32       310:F1:FA          32       50        -       -                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |             |               |                   |                  |                    | -                   | —                | —                 | —                |
| 20       54       28       11       34       61       36F:14A            21       50       8       22       34       70       310+F2-7A            22       50       8       6       3       38       37F:14A            24       50       8       6       3       38       38F:24A             25       50       2         98       310+F2.8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |             |               |                   |                  |                    | -                   | _                | _                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | —                 | —                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    |                     |                  | —                 | —                |
| 23       52       11       6       3       83       3/F:1-4A            25       50       8       6       3       86       35F2-4A            26       50       2       -        100       410+F2-8A             27       51         100       410+F2-8A             28       50       10       12       34       66       35F2-7A       12       10+15+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |             |               |                   |                  |                    |                     |                  | —                 | —                |
| 24       50       8       6       3       86       36F24A            26       50       2         98       310+F23A             28       50       10       12       34       66       39F14A       12       79F                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 25       50       8       6       3       86       36F;24A             27       51         100       410+F;24A             28       50       6       8       34       74       39F;27A       12       10+15+F          29       50       6       8       34       74       39F;27A       12       10+15+F          31       49       27       16       34       41       35F;2AA       12       310+F          33       50       24       2       3       42       38F;2AA       22       310+F          34       50       10       -       -       58       39F;2AA       22       310+F           35       50       -       -       -       44       37F;2AA       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>—</td>                                                                                                                                                                                                                               |    |    |             |               |                   |                  |                    |                     |                  | _                 | —                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     | _                | —                 | _                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    | 8           |               |                   |                  |                    |                     | _                | —                 | _                |
| 28       50       10       12       34       66       39F:1-AA       12       7PF          30       48       4       10       46       73       31-0F:1-8A       13       510+F          31       49       27       16       344       41       35F:1-AA       16       3-7F          32       50          74       34F:2AA       26       610+F          34       50       10         68       39F:1-1AA       32       3:10+F:1-AA          35       50        -       -       44       7F:2AA             36       50       86       6       3       84F:2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 29       50       6       8       34       74       39F27A       12       10-15FF          31       49       27       16       34       13       35-10+F          31       49       27       16       34       36F1-3A       16       37F          33       50       24       2       3       36F2-5A       32       310+F1-6A          34       50       0       -       -       44       37F2-3A       36       6-10+F          37       44       70       21       34       9       34F2A       -       -       -       -         38       50       76       10       34       14       36F2-3A       -       -       -       -         39       50       76       10       34       14       36F2-3A       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                          |    |    |             |               |                   |                  |                    |                     |                  |                   | _                |
| 30       48       4       10       4.6       73       1-10F:1-8A       16       3-7F          31       50          74       34F:26A       26       6-10+F          34       50       10         58       33F:1-4A       32       3-10+F          35       50         44       34F:2A            36       50       66       6       3       8       34F:2A            37       44       70       18       3-4       12       3F:2A             38       50       70       18       3-4       12       3F:2A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 31       49       27       16       3.4       41       3.571-1.4A       16       3.7F          33       50       24       2       3       3.472       3.872-25A       22       3.101-F          35       50       10         44       3.772-3A       56       6.104-F          36       60       86       6       3       8       3.4F2A             37       44       70       21       3.4       9       3.4F2A             38       50       70       18       3.4       12       3.4F2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    |                     |                  | -                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    | 24          | 2             |                   |                  |                    |                     |                  | _                 | _                |
| 36       50 $$ -44       377:23A       56       6-10+F          37       44       70       21       34       9       34F:2A             38       50       70       18       34       12       3F:2A             39       50       76       10       34       14       36F:2A             40       50       6       78       37       16       37F:26A             41       50       72       10       3       18       34F:13A             42       33       52       30       34F:2AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 | 50 | 10          | _             | _                 |                  |                    |                     | 3-10+F:1-6A      | -                 | _                |
| 77 $44$ $70$ $21$ $344$ $9$ $34F:2A$ $    88$ $50$ $76$ $10$ $344$ $14$ $36F:23A$ $    40$ $50$ $6$ $78$ $3.77$ $16$ $37F:26A$ $    42$ $33$ $52$ $30$ $344$ $18$ $34F:23A$ $    44$ $38$ $58$ $18$ $3$ $24$ $34F:23A$ $    44$ $38$ $58$ $18$ $3$ $30$ $34F:23A$ $                                   -$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 | 50 | —           | _             | _                 | 44               | 3-7F:2-3A          | 56                  |                  | -                 | _                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    | -                   | —                | —                 | —                |
| 39       50       76       10       3.4       14       3.6E:23A             40       50       6       78       3.7       16       3.7E:26A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |             |               |                   |                  |                    |                     |                  | —                 | —                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | _                 | —                |
| 41       50       72       10       3       18       34F:13A            42       33       52       30       34       18       34F:12AA            43       54       30       50       356       20       39F:26A            44       38       58       18       3       24       34F:2AA            45       37       54       19       3       27       35F:24A            46       50       66       4       3       30       34F:12A             47       50       44       26       34       30       36F:25A             49       50       28       42       356       39       38F:26A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |             |               |                   |                  |                    |                     | —                | —                 | —                |
| 423352303418345F24A435430503-52039F26A4438581832434F23A4537541932736F24A465066433034F12A475044263-43034F25A485034363-53034F25A505016523-63237F25A515066663103849F27A524912493-63934F26A53505283-44037F24A545018363-56036F24A5540251536036F25A5655251536136F24A58607636F25A210+F6151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |             |               |                   |                  |                    |                     | —                | —                 | —                |
| 435430503-5203-9F:2-6A $     -$ 4438581832434F:2-3A $    -$ 455754193273-6F:2-4A $    -$ 4650664303-6F:2-3A $    -$ 485034363-5303-6F:2-5A $   -$ 505016523-6323-7F:2-5A $   -$ 51506563-10384-9F:2-7A $   -$ 524912493-6383-6F:2-5A $   -$ 53505283-4403-7F:2-4A $   -$ 545018363-5463-6F:2-4A $   -$ 554025153-5603-6F:2-4A $   -$ 565525153603-6F:2-4A $   -$ 575020163643-6F:2-4A $   -$ 5850 $-$ 103F and 10+F904-15+F:3-10+A $   -$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>—</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |             |               |                   |                  |                    |                     |                  | _                 | —                |
| 44385818324 $3.4F:2.3A$ 45375419327 $3.6F:2.3A$ 4650664330 $3.4F:1.2A$ 475044263.430 $3.4F:1.3A$ 485034363.530 $3.6F:2.5A$ 505016523.632 $3.7F:2.5A$ 51506563.1038 $4.9F:2.7A$ 524912493.639 $3.8F:2.6A$ 53505283.440 $3.7F:2.4A$ 5450183.63.560 $3.6F:2.4A$ 55402515360 $3.6F:2.4A$ 56552515360 $3.6F:2.4A$ 5850103F and 10+F90 $4.5F:3.04A$ 48F61512276 $3.6F:2.5A$ 2 $10+F$ 6250226368 $3.5F:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |             |               |                   |                  |                    |                     |                  | —                 | _                |
| 45375419327 $3 \text{ fr} 2 \text{ tAA}$ 4650664330 $3 \text{ fr} 1 \text{ t2A}$ 47504426 $3 \text{ 4}$ 30 $3 \text{ fr} 1 \text{ t2A}$ 485034363530 $3 \text{ fr} 1 \text{ t2A}$ 49502842 $3 \text{ fr}$ 30 $3 \text{ fr} 1 \text{ t2A}$ 50501652 $3 \text{ fr}$ 30 $3 \text{ fr} 1 \text{ t2A}$ 515066631038 $4 \text{ 912} \text{ t7A}$ 524912493639 $3 \text{ fr} 1 \text{ t2A}$ 5350528 $3 \text{ 44}$ $0 \text{ 3} \text{ fr} 1 \text{ t2A}$ 545018363560 $3 \text{ fr} 1 \text{ tA}$ 55402515360 $3 \text{ fr} 1 \text{ tA}$ 5850103 \text{ frad} 10 + F90 $4 \text{ 15} \text{ F} 310 \text{ A}$ 5950876 $3 \text{ fr} 2 \text{ tA}$ 48F6151226368 $3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  | _                 | —                |
| 46506643303.4F:2A475044263.4303.4F:2A485034363.5303.4F:2A495028423.5303.4F:2A505016523.66323.7F:2A51506563.10384.9F:27A524912493.6393.8F:26A53505283.44403.7F:24A5450183.63.5463.6F:24A55402.51.53603.6F:14A5750201.63643.6F:14A5850763.6F:2AA61512.2763.6F:2AA210+F62502.263683.5F:3A210+F63492.51.43553.4F:3A48F644916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 475044263.4303.6F:2.3A485034363.5303.8F:2.5A505016523.6323.7F:2.5A51506563.10384.9F:2.7A524912493.63.93.8F:2.6A53505283.4403.7F:2.4A5450183.63.5463.6F:2.4A55402.5153.5603.6F:1.3A56552.5153603.6F:2.4A5850103F and 10+F904.15:F.310+A595087E60498413.5493.7F:2.5A210+F61512.27E62502.263683.5F:3.4A48F644916193.6593.10+F:2.7A610+F <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |             |               |                   |                  |                    |                     | _                |                   |                  |
| 485034363-5303-8F:3-5A495028423-5303-8F:2-5A505016523-6323-7F:2-5A51506563-10384-9F:2-7A524912493-6393-8F:2-6A53505283-4403-7F:2-4A545018363-5603-6F:1-3A554025153603-6F:2-4A565525153603-6F:2-4A5850103F and 10+F904-15+F:3-10+A59508923-8F:2-5A210+F615122763-6F:2-6A27F62502263683-5F:2-4A48F644916193-6593-10+F:2-7A610+-15+F655122393-7313-9F:2-5A83-10+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |             |               |                   |                  |                    |                     | _                | _                 | _                |
| 495028423-5303-6F:2-5A505016523-6323-F:2-5A51506563-10384-9F:2-7A524912493-6393-8F:2-6A53505283-4403-F:2-4A5450183-63-5603-5F:1-3A554025153-5603-5F:1-3A565525153603-6F:2-4A5850103F and 10+F904-15+F:3-10+A59508763-6F:2-5A210+F615122763-6F:2-6A27F62502263683-5F:3-4A48F644916193-6593-10+F:2-7A610++15+F655122393-7313-9F:2-5A83-10+F66513543-3F:2-4A86-10+F66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |             |               |                   |                  |                    | _                   | _                | _                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    | _                   | _                | _                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    | -                   | _                | _                 | _                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    | -                   | _                | _                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 | 49 | 12          | 49            | 3-6               | 39               | 3-8F:2-6A          | -                   | _                | _                 | _                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    | -                   | _                | —                 | —                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    |                     | _                | _                 | _                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    | -                   | _                | _                 | _                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    | -                   | —                | —                 | —                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | —                 | —                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               | 3F and 10+F       |                  |                    |                     | _                | _                 | _                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     | 10.5             |                   | —                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             | 41            |                   |                  |                    |                     |                  | -                 | —                |
| $            \begin{array}{ccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | -                 | —                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  |                   | _                |
| $            \begin{array}{ccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| $            \begin{array}{ccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  |                   | _                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| $            \begin{array}{ccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 70       49       4       6       3       67       3-7+F:2-5A       23       5+F-7+F          71       50       4       12       3-7       52       3-9F:2-7A       32       6-15+F          72       43       9        35       4-9F:2-4A       56       5-10+F          73       46       2        11       3-4F:2A       87       5-10+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |             |               |                   |                  |                    |                     |                  | _                 | _                |
| 71       50       4       12       3-7       52       3-9F:2-7A       32       6-15+F          72       43       9        35       4-9F:2-4A       56       5-10+F          73       46       2        11       3-4F:2A       87       5-10+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |             |               |                   |                  |                    |                     |                  | -                 | _                |
| 72     43     9      35     4-9F:2-4A     56     5-10+F        73     46     2      11     3-4F:2A     87     5-10+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |             |               |                   |                  |                    |                     |                  | -                 | _                |
| 73 46 2 — — 11 3-4F:2A 87 5-10+F —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    | 9           | _             | _                 |                  | 4-9F:2-4A          |                     |                  | -                 | _                |
| (continued on following page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |             | _             | _                 | 11               | 3-4F:2A            | 87                  |                  | -                 | —                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   | (continue        | ed on following pa | ge)                 |                  |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |             |               |                   |                  |                    |                     |                  |                   |                  |

© 2016 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Information downloaded from jco.ascopubs.org and provided by at NORTH SHORE MEDICAL CENTER on April 11, 2016 Copyright © 2016 Americanfr**Societ9**0d23li200al70ncology. All rights reserved.

| Study<br>ID | No. of RS<br>Cells | Disomy (%) | Polysomy<br>(%) | No. of Copies | Copy<br>Gain (%) | No. of Copies | Amplification (%) | No. of Copies | Translocation (%) | No. of<br>Copies        |
|-------------|--------------------|------------|-----------------|---------------|------------------|---------------|-------------------|---------------|-------------------|-------------------------|
| 74          | 52                 | 4          | 8               | 3             | —                | -             | -                 | -             | 88                | One allele<br>rearrange |
| '5          | 50                 | 100        | —               | _             | _                | _             | _                 | _             | _                 |                         |
| 6           | 50                 | 38         | 52              | 3-6           | 10               | 4-5F:3A       | _                 | _             | _                 | _                       |
| 7           | 50                 | 62         | 22              | 3-4           | 16               | 3-4F:2-3A     | _                 | _             | _                 | _                       |
| '8          | 51                 | 66         | 10              | 3-4           | 24               | 3-5F:1-4A     | _                 | _             | _                 | _                       |
| '9          | 50                 | 66         | 6               | 3-5           | 28               | 3-6F:2-4A     | _                 | _             | _                 | _                       |
| 30          | 49                 | 35         | 35              | 3-6           | 30               | 3-5F:2-4A     | _                 | _             | _                 | _                       |
| 31          | 50                 | 8          | 62              | 3-8           | 30               | 5-7F:3-6A     | _                 | _             | _                 | _                       |
| 32          | 48                 | 56         | 13              | 3-4           | 31               | 3-4F:1-3A     | _                 | _             | _                 | _                       |
| 33          | 49                 | 22         | 33              | 3-6           | 45               | 3-7F:1-5A     | _                 | _             | _                 | _                       |
| 34          | 50                 | 12         | 38              | 3-4           | 50               | 3-7F:2-5A     | _                 | _             | _                 | _                       |
| 35          | 50                 | 36         | 12              | 3-5           | 52               | 3-6F:1-5A     | _                 | _             | _                 | _                       |
| 36          | 37                 | 38         | 8               | 3-4           | 54               | 3-6F:1-4A     | _                 | _             | _                 | _                       |
| 37          | 50                 | 28         | 12              | 3-5           | 60               | 3-5+F:1-4A    | _                 | _             | _                 | _                       |
| 38          | 50                 | —          | 36              | 3-5           | 64               | 3-9F:2-5A     | _                 | _             | _                 | _                       |
| 39          | 50                 | 30         | 4               | 3-4           | 66               | 3-7F:2-3A     | _                 | _             | _                 | _                       |
| 90          | 49                 | 14         | _               | _             | 86               | 3-6F:2-5A     | _                 | _             | _                 | _                       |
| 91          | 48                 | 11         | 35              | 3-8           | 50               | 4-10+F:3-7A   | 4                 | 4-9F          | _                 | _                       |
| 92          | 46                 | 4          | 16              | 3-4           | 76               | 3-7F:1-5A     | 4                 | 10+F          | _                 | _                       |
| 93          | 50                 | 16         | 20              | 3-6           | 58               | 3-9F:2-5A     | 6                 | 6-9F          | _                 | _                       |
| 94          | 50                 | 16         | 8               | 3-4           | 70               | 3-8F:2-4A     | 6                 | 6F            | _                 | _                       |
| 95          | 49                 | 6          | 6               | 3             | 82               | 3-9F:2-5A     | 6                 | 9-15+F        | _                 | _                       |
| 96          | 49                 | 4          | 10              | 3-4           | 72               | 3-10+F:2-8A   | 14                | 8-10+F        | _                 | _                       |
| 97          | 50                 | 10         | 52              | 3-10+         | 22               | 3-15+F:2-10+A | 16                | 6-15+F        | _                 | _                       |
| 98          | 50                 | _          | 18              | 3-7           | 66               | 4-8F:2-6A     | 16                | 3-10+F        | _                 | _                       |
| 99          | 53                 | 13         | 9               | 3-10+         | 61               | 4-10+F:2-9A   | 17                | 5+F-10+F      | _                 | _                       |
| 00          | 50                 | 6          | 8               | 3             | 68               | 3-8F:2-4A     | 18                | 6-10+F        | -                 | _                       |
| 101         | 50                 | —          | 14              | 3-7           | 66               | 1-10+F:2-9A   | 20                | 6-15+F        | -                 | _                       |
| 102         | 50                 | 22         | _               | _             | 52               | 3-5F:1-2A     | 26                | 3-7F          | -                 | _                       |
| 103         | 52                 | 21         | _               | _             | 50               | 3-9F:2-4A     | 29                | 3-10+F        | -                 | _                       |
| 104         | 51                 | 4          | _               | _             | 63               | 3-8F:2-5A     | 33                | 6-10+F        | -                 | _                       |
| 105         | 50                 | 8          | _               | _             | 28               | 3-5F:1-3A     | 64                | 6-15+F        | _                 | _                       |
| 06          | 50                 | 2          | _               | _             | 22               | 4-5F:2A       | 76                | 6-10+F        | -                 | _                       |
| 107         | 50                 | 6          | _               | _             | 2                | 3F:2A         | 92                | 3-9F          | _                 |                         |
| 08          | 50                 | 22         | 6               | 3             | -                | —             | —                 | —             | 72                | One alle<br>rearrance   |

NOTE. The data are color coded by clinical stage: early stage favorable, light blue; early stage unfavorable, medium blue; advanced stage, dark blue. Abbreviations: A, aqua centromeric signal; F, fused red/green PD-L1/PD-L2 signal; RS, Reed-Sternberg.